On the Collisionless Damping and Saturation of Zonal Flows

P.H. Diamond

CMTFO, CASS and Dept. of Physics, UCSD, USA

Collaborators: M. Malkov¹, P.-C. Hsu¹, S.M. Tobias², A. Ashourvan¹, G. Tynan, ¹O.D. Curcan³

¹UCSD, ²Leeds, ³Ecole Polytechnique

- \triangleright Time limit \Rightarrow reduction in scope relative to abstract
- ▷ Works in Progress

- $\triangleright\,$ Zonal Flows: Some Things We Know
- ▷ Major Unresolved Issue: Damping at Low Collisionality
- ▷ Something General: Non-Perturbative Approaches to the Structure of the Reynolds Stress.
- ▷ Something Specific: A Second Look at Reynolds Work (R_T) and What it (really) Means.
- \triangleright Something Relevant: $L \rightarrow H$ Threshold of Low Collisionality?
- \triangleright Discussion

" Zonal Flows and Pattern Formation"O. D. Gurcan and P.D.J. Phys. A, in press.

emphasized *real space* approach, in contrast to PPCF.
enlarged discussion of non-MFE connections.

I.) Zonal Flows: Some Things We know

- \triangleright sheared $n=m=0~E\times B$ flows
- minimal inertia (Hasegawa) minimal damping (NMR) no radial transport

- $\triangleright~{\bf k}:$ nonlinear coupling drive: modulation, parametrics, etc. (see D I^2 2005)
- $\triangleright \text{ Better: } Space (GD, 2015) \\ \rightarrow \text{inhomogeneous PV mixing drives} \\ \rightarrow \text{PV:}$

$$\begin{aligned} q &= \nabla^2 \psi + \beta y \quad \text{(QG)} \\ q &= n - \nabla^2 \phi \quad \text{(HW)} \\ \left< \tilde{v}_r \tilde{n} \right> \implies \left< \tilde{v}_r \nabla^2 \tilde{\phi} \right> \implies -\partial_r \left< \tilde{v}_r \tilde{v}_\vartheta \right> \implies \text{Flow} \end{aligned}$$

Inhomogeneous PV mixing

Predator-Prey Paradigm

 \triangleright Drift Waves \rightarrow Prey (P.D., et. al 1994) Zonal Flow \rightarrow Predator

$$\frac{\partial N}{\partial t} = \gamma N - \alpha V^2 N - \Delta \omega N^2 +?$$

$$\uparrow$$

$$\frac{\partial V^2}{\partial t} = \alpha N V^2 - \gamma_d V^2 - [\gamma_{NL} (N, V^2) V^2]$$

$$\downarrow \qquad \downarrow$$

drag dam- NL damping $\sim \nu_{i,i}$ ping (?!)

 \triangleright drag regulates system! \Rightarrow sets fluctuation levels, etc.

- \triangleright what of $\nu_{i,i} \rightarrow 0, \gamma_d \rightarrow 0$ limit?
- \triangleright need confront nonlinear damping and feedback!

II.) Major Unresolved Issues: Collisionless Damping

▷ Usual rejoinder to $\nu_{i,i} \rightarrow 0, \ R/L_T \gg E/L_{Te}$?

- - $\nabla n,\,\nabla T_i,\,\nabla V_{\parallel}$ driven (beyond classic Rayleigh)
- Complications:
- magnetic shear imposes significant constraint

- linear instability $\rightarrow \nu_{eff}$??

- $\,\triangleright\,$ numerical results controversial, inconclusive
 - KH must be accompanied by feed back to fluctuation intensity (not addressed).
 - no work on CTEM-driven ZFs
 N.B. :
 - flat -q, weak-shear "de-stiffened mode" (ala' JET) is relevant improved core confinement regime
 - $-q' \rightarrow 0$ removes \hat{s} constraint \Rightarrow ZF stability? (c.f. Z. Lu, et. al. ; TTF 2015)
 - Question: How weak must $\hat{\boldsymbol{s}}$ be?

- ▷ More interestingly:
 - linear stability can't be only feedback mechanism in nonlinearly coupled system
 - ambient fluctuations scatter $\nabla u \Rightarrow$ effective viscosity? Related:
 - models perturbative often capture only lowest order eddy tilting effects
 - \triangleright non-perturbative approaches?
 - \triangleright general models of vorticity flux?
 - impact of feedback on evolution?
 - i.e. see what happens....

Non-Perturbative Approaches to

the Reynolds Stress

P.-C. Hsu, P.D., S.M. Tobias, Phys. Rev. E, 2015

P.-C. Hsu, P.D., PoP 2015

Non-perturbative approaches

PV mixing in space is essential in ZF generation.

Tayloridentity: $\langle \tilde{\boldsymbol{\nu}}_{\boldsymbol{y}} \nabla^2 \tilde{\boldsymbol{\phi}} \rangle = -\partial_{\boldsymbol{y}} \langle \tilde{\boldsymbol{\nu}}_{\boldsymbol{y}} \tilde{\boldsymbol{\nu}}_{\boldsymbol{x}} \rangle$ vorticity flux Reynolds force

Key: How represent inhomogeneous PV mixing

General structure of PV flux?

 \rightarrow relaxation principles!

most treatment of ZF:

- -- perturbation theory
- -- modulational instability
- (test shear + gas of waves)

~ linear theory

-> physics of evolved PV mixing? -> something more general? non-perturb model 1: use selective decay principle

What form must the PV flux have so as to dissipate enstrophy while conserving energy?

non-perturb model 2: use joint reflection symmetry

What form must the PV flux have so as to satisfy the joint reflection symmetry principle for PV transport/mixing?

20

General principle: selective decay

Using selective decay for flux

dual cascade		minimum enstrophy relaxation (Bretherton & Haidvogel 1976)	nalogy (J.B. Taylor, 1974)
	turbulence	2D hydro	3D MHD
	conserved quantity (constraint)	total kinetic energy	global magnetic helicity
	dissipated quantity (minimized)	fluctuation potential enstrophy	magnetic energy
	finalstate	minimum enstrophy state	Taylorstate
		flow structure emergent	force free B field configuration
	structural approach	$\frac{\partial}{\partial t} \Omega < 0 \Rightarrow \Gamma_{\mathbf{g}} \Rightarrow \Gamma_{q}$	$\frac{\partial}{\partial t}E_{M}<0\Rightarrow\Gamma_{H}$

flux? what can be said about dynamics?

 \rightarrow structural approach (this work): What form must the PV flux have so as to dissipate enstrophy while conserving energy?

General principle based on general physical ideas \rightarrow useful for dynamical model

PV flux

→ PV conservation

mean field PV: $\frac{\partial \langle q \rangle}{\partial t} + \partial_y \langle v_y q \rangle = v_0 \partial_y^2 \langle q \rangle$ Γ_q : mean field PV flux

Key Point: what form does PV flux have s/t dissipate enstrophy, conserve energy

selective decay

 $\Rightarrow \text{ energy conserved} \qquad B = \int \frac{\left(\partial_{y} \langle \phi \rangle\right)^{2}}{2}$ $\frac{\partial E}{\partial t} = \int \langle \phi \rangle \partial_{y} \Gamma_{g} = -\int \partial_{y} \langle \phi \rangle \Gamma_{g} \qquad \Rightarrow \Gamma_{g} = \frac{\partial_{y} \Gamma}{\partial_{y} \langle \phi \rangle}$

 \rightarrow enstrophy minimized $\Omega = \int \frac{\langle q \rangle^2}{2}$

$$\frac{\partial\Omega}{\partial t} = -\int \langle q \rangle \partial_{y} \Gamma_{q} = -\int \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\partial_{y} \langle \phi \rangle} \right) \Gamma_{g}$$

$$\frac{\partial\Omega}{\partial t} < \mathbf{0} \Rightarrow \Gamma_{g} = \mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\partial_{y} \langle \phi \rangle} \right) \qquad \Rightarrow \Gamma_{g} = \frac{1}{\partial_{y} \langle \phi \rangle} \partial_{y} \left[\mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\partial_{y} \langle \phi \rangle} \right) \right] \qquad \text{general form}$$

$$parameter \ \text{TBD} \qquad \langle \boldsymbol{v}_{x} \rangle$$

Structure of PV flux

$$\Gamma_{q} = \frac{1}{\langle \boldsymbol{\nu}_{x} \rangle} \partial_{y} \left[\mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\langle \boldsymbol{\nu}_{x} \rangle} \right) \right] = \frac{1}{\langle \boldsymbol{\nu}_{x} \rangle} \partial_{y} \left[\mu \left(\frac{\langle q \rangle \partial_{y} \langle q \rangle}{\langle \boldsymbol{\nu}_{x} \rangle^{2}} + \frac{\partial_{y}^{2} \langle q \rangle}{\langle \boldsymbol{\nu}_{x} \rangle} \right) \right]$$

diffusion parameter calculated by perturbation theory, numerics...

diffusion and hyper diffusion of PV

<--> usual story : Fick's diffusion

characteristic scale
$$l_{e} \equiv \sqrt{\begin{vmatrix} \langle v_{x} \rangle \\ \partial_{y} \langle q \rangle \end{vmatrix}}$$

 $l > l_{e}$: zonal flow growth
 $l < l_{e}$: zonal flow damping
(hyper viscosity-dominated)
Rhines scale $L_{g} \sim \sqrt{\frac{U}{\beta}}$
 $l > L_{g}$: wave-dominated
 $l < L_{g}$: eddy-dominated

non-perturb model 1 PV staircase PV gradient large $\partial_{y}\langle q \rangle$ relaxed state: homogenization of where zonal flow large Dr \rightarrow Zonal flows track the PV gradient \rightarrow PV staircase (v)

- Highly structured profile of the staircase is reconciled with the homogenization or mixing process required to produce it.
- Staircase may arise naturally as a consequence of minimum enstrophy relaxation.

What sets the "minimum enstrophy"

 Decay drives relaxation. The relaxation rate can be derived by linear perturbation theory about the minimum enstrophy state

$$\begin{array}{c} \langle q \rangle = q_{m}(y) + \delta q(y,t) \\ \langle \phi \rangle = \phi_{m}(y) + \delta \phi(y,t) \\ \partial_{y}q_{m} = \lambda \partial_{y}\phi_{m} \\ \delta q(y,t) = \delta q_{0} \exp(-\gamma_{rel}t - i\omega t + iky) \end{array} \right| \qquad \gamma_{ml} = \mu \left(\frac{k^{4} + 4\lambda k^{2} + 3\lambda^{2}}{\langle v_{x} \rangle^{2}} - \frac{8q_{m}^{2}(k^{2} + \lambda)}{\langle v_{x} \rangle^{4}} \right) \\ \omega_{k} = \mu \left(-\frac{4q_{m}k^{3} + 10q_{m}k\lambda}{\langle v_{x} \rangle^{3}} - \frac{8q_{m}^{3}k}{\langle v_{x} \rangle^{5}} \right)$$

The condition of relaxation (modes are damped):

$$\begin{array}{l} \Upsilon_{\mathrm{rel}} > 0 \rightarrow k^{2} > \frac{8q_{m}^{2}}{\langle v_{x} \rangle^{2}} - 3\lambda \\ k^{2} > 0 \rightarrow \frac{8q_{m}^{2}}{\langle v_{x} \rangle^{2}} > 3\lambda \quad \rightarrow \mathrm{Relates} \quad q_{m}^{2} \text{ with ZF and scale factor} \end{array}$$

- ZF cannot grow arbitrarily large, and is constrained by the enstrophy
 To sustain a zonal flow in the minimum enstrophy state, a critical residual enstrophy density is needed.
 - $ightarrow q_{\bullet}^{2}$: the 'minimum enstrophy' of relaxation, related to scale

L→H Threshold at Low Collisionality M. Malkov, P.D., et. al.; PoP 2015 P.-C. Hsu, P.D., S.M. Tobias, Phys. Rev. E, 2015 M.M., P.D., et. al. TTF 2015 (Invited)

Emerging Scenario for $L \rightarrow H$

LH-triggering sequence of events

 $\begin{array}{lll} Q \uparrow \implies & \tilde{n}, \ \tilde{v} \ \uparrow \Longrightarrow \ < \tilde{v}_r \tilde{v}_\vartheta >; \ < \tilde{v}_r \tilde{v}_\vartheta > d < v > / \mathrm{dr} \uparrow \implies |\tilde{n}|^2 \downarrow, \\ \mathrm{etc.} \end{array}$

 $\implies \nabla P_i | \uparrow \implies \text{lock in transition } (Tynan \ et \ al. \ 2013)$

- $\triangleright \ \nabla T$ etc. drives turbulence that generates low frequency shear flow via Reynolds stress
- ▷ Reynolds work coupling collapses the turbulence thus reducing particle and heat transport
- $\triangleright \text{ Transport weakens} \rightarrow \nabla \langle P_i \rangle \text{ builds up at the edge, accompanied} \\ \text{by electric field shear } \nabla \langle P_i \rangle \rightarrow \langle V_E \rangle' \end{cases}$
- \triangleright locks in $L \rightarrow H$ transition: (see Hinton, Staebler 1991, 93)
- ▷ Complex sequence of Transition Evolution and Alternative End States (I-mode) possible (*D. Whyte et al. 2011*)

Some Questions:

Figure 3. Power threshold versus density for the L–H transition normalized to $|R_{\rm I}| = 2.35$ T but 6. $R_{\rm I}^{10} = 4$ denedence. The fits to the $R_{\rm L-H}$ data indicated here are also shown in figure 4. The error bars include all the contributions to $R_{\rm Hor}$. The larger error bars are due to the dW/dt term for discharges with a rather strong change of heating power before the occurrence of the L–H transition.

Ryter et al 2013

- ▷ How does the scenario relate to the Power Threshold?
 - Is $P_{\rm thr}(n)$ minimum recoverable?
- ▷ Micro-Macro connection in threshold, if any?
- How does micro-physics determine threshold scalings?
- ▷ What is the physics/origin of P_{thr} (n)? Energy coupling?
- ▷ Will P_{min} persist in collisionless, electron-heated regimes (ITER)?

Scenario (inspired partly by F. Ryter, 2013-14)

- $\triangleright \nabla P_i|_{edge}$ essential to 'lock in' transition
- $\triangleright \text{ to form } \nabla P_i \text{ at low } n, \text{ etc. need (collisional)} \\ \text{ energy transfer from electrons to ions}$

$$\frac{\partial T_{e}}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_{e} = -\frac{2m}{M\tau} (T_{e} - T_{i}) + Q_{e}$$
$$\frac{\partial T_{i}}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_{i} = +\frac{2m}{M\tau} (T_{e} - T_{i}) + Q_{i}$$

 \triangleright suggests that the minimum is due to:

- P_{thr} decreases due to increasing heat transfer from electrons to ions
- P_{thr} increases (stronger edge ∇P_i driver needed) due to increase in shear flow damping
- Power and edge heat flux are not the only crit. variables: also need the ratio of electron energy conf. time to exceed that of e i temp. equilibration $T_r = \tau_{Ee}/\tau_{ei}$ most important in pure e-heating regimes
 - $\triangleright~T_r\gg 1$ somewhat equivalent to direct ion heating
 - ▷ $T_r \ll 1$ ions remain cold \rightarrow no LH transition (or else, it's anomalous!)

Predator-Prey Model Equations

- $\triangleright \text{ Based on 1-D numerical 5-field model } (Miki \ & Diamond++ 2012, 13+)$
- ▷ Currently operates on 6 fields $(+P_e)$ with self-consistenly evolved transport coefficients, anomalous heat exchange and NL flow dissipation (*MM*, *PD*, *K. Miki*, *J. Rice and G. Tynan, PoP 2015*)
- ▷ Heat transport, + Two species, with coupling, i,e (anomalous heat exchange in color):

$$\frac{\partial P_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_e = -\frac{2m}{M\tau} \left(P_e - P_i \right) + Q_e - \gamma_{CTEM} \cdot I$$
$$\frac{\partial P_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_i = \frac{2m}{M\tau} \left(P_e - P_i \right) + Q_i + \gamma_{CTEM} \cdot I + \gamma_{ZFdiss} \cdot I$$
$$= -\left(\chi_{neo} + \chi_t \right) \frac{\partial P}{\partial r}, \quad \gamma_{ZFdiss} = \gamma_{visc} \left(\frac{\partial \sqrt{E_0}}{\partial r} \right)^2 + \gamma_{Hvisc} \left(\frac{\partial^2 \sqrt{E_0}}{\partial r^2} \right)^2$$

 $\rhd~I$ and E_0 - DW and ZF energy (next VG), plasma density and the mean flow, as before

Equations cont'd; Anomalous Heat Exchange

- \triangleright in high T_e low n regimes (pure e-heating) the thermal coupling is anomalous (through turbulence)
- ▷ ZF dissip. (KH?) supplies energy to ions, and returns energy to turbulence

 \triangleright DW turbulence:

$$\frac{\partial I}{\partial t} = \left(\gamma - \Delta \omega I - \alpha_0 E_0 - \alpha_V \langle V_E \rangle^2\right) I + \chi_N \frac{\partial}{\partial r} I \frac{\partial I}{\partial r}, \ \chi_N \sim \omega_* C_s^2$$

Driver : $\gamma = \gamma_{ITG} + \gamma_{CTEM} + NL ZF$ Dissip less P_i Heat (currently balanced)

 \triangleright ZF energy:

$$\frac{\partial E_0}{\partial t} = \left(\frac{\alpha_0 I}{1 + \zeta_0 \left\langle V_E \right\rangle^{\prime 2}} - \gamma_{damp}\right) E_0, \quad \gamma_{damp} = \gamma_{col} + \gamma_{ZFdiss} \cdot I/E_0$$

$$\gamma_{ZFdiss} = \gamma_{visc} \left(\frac{\partial \sqrt{E_0}}{\partial r}\right)^2 + \gamma_{Hvisc} \left(\frac{\partial^2 \sqrt{E_0}}{\partial r^2}\right)^2 \text{- toy model form (work in progress)}$$

Model studies: Transition (Collisional Coupling)

- ▷ ion heat dominated transition $H_{i/(i+e)} = 0.7$
- ▷ strong pre-transition fluctuations of all quantities
- $\,\triangleright\,$ well organized post-transition flow
- \triangleright strong P_e edge barrier

 \triangleright Heating mix

$$H_{i/(i+e)} \equiv rac{Q_i}{Q_i+Q_e}$$
 (aka $H_{ ext{mix}}$)

- ▷ Density (center-line averaged) is NOT a control parameter. It is measured at each transition point
- ▷ Related control parameter is the reference density given through BC and fueling rate
- ▷ There is a complicated relation between density and ref. density
- ▷ Other control parameters:
 - fueling depth
 - heat deposition depth and width, etc.

 \rightarrow they appear less critical than $H_{i/(i+e)}$

$P_{th}(n, H_{i/(i+e)})$ scans: Recovering the Minimum

- $P_{\mathrm{thr}}\left(H_{i/(i+e)},n\right)$ -
 - ▷ electron heating at lower densities
 - \triangleright ion heating at higher densities

 $\triangleright \text{ Relate } H_{i/(i+e)} \text{ and } n \text{ by a monotonic } H_{i/(i+e)}(n)$

Anomalous Regime (Preliminary)

- ▷ Anomalous Regime: $\nu_{ei}n(T_e T_i) < \gamma_{anom-eicoupl} \cdot I$ (Manheimer, '78; Zhao, PD, 2012; Garbet, 2013)
 - Anomalous regime, strong electron heating (ITER)
 - n scaling coupling \implies Anomalous coupling

$$\frac{\partial T_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_e = -\frac{2m}{M\tau} (T_e - T_i) + Q_e$$
$$\frac{\partial T_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_i = +\frac{2m}{M\tau} (T_e - T_i) + Q_i$$

- Anomalous coupling dominates

 $\triangleright \ {\rm scaling} + {\rm intensity} \ {\rm dependence} \Longrightarrow {\rm coupling}$

$$\frac{\partial T_{e}}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_{e} = Q_{e} + \langle \mathbf{E} \cdot \mathbf{J}_{e} \rangle \rightarrow (<0)$$
$$\frac{\partial T_{i}}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_{i} = Q_{e} + \langle \mathbf{E} \cdot \mathbf{J}_{i} \rangle \rightarrow (>0)$$

LH transition: Anomalous Transfer Dominates

Extreme limit to illustrate temperature relaxation: Pure electron heating, $\nu_{ei} \rightarrow 0$

- $\triangleright \ \mathrm{CTEM} \rightarrow \mathrm{Heat} \ \mathrm{Exch} \swarrow^{\nearrow} \ \mathrm{turbulence} \\ \searrow \ \mathrm{ions}$
 - Is $P_{\rm thr}$ set only by local properties at the edge?
- $\triangleright e i$ -temperature equilibration front
- $\triangleright \ P_i \uparrow \text{globally} \rightarrow \text{strong } \nabla P_i \text{ at the edge} \\ \rightarrow \text{LH transition}$

Anomalous Regime: Issues

- $\triangleright\,$ An Issue:
 - Predator-Prey \Rightarrow Shear Flow Damping
 - \Rightarrow Anomalous regime: collisional drag problematic
 - Low collisionality \rightarrow what controls heat exchange?
 - NL damping ⇔ mediated by ZF instability (i.e. KH, tertiary; *Rogers et al 2000; Kim, PD, 2003*)

 \Rightarrow hyperviscosity, intensity dependent

– Returns ZF energy to turbulence $\rightarrow P_i$

Results so far

- \triangleright transition with anomalous heat exchange happens!
- \triangleright requirements for LH transition in high T_e regimes when the collisional heat exchange is weak:
 - efficient ion heating by CTEM turbulence
 - energy return to turbulence by ZF damping (caused by KH instability?!)
 - may be related to Ryter 2014. Subcritical $\nabla T_e \uparrow$ states at ultra-low density

- $\,\vartriangleright\,$ ZF stability and saturation in CTEM regimes
- \triangleright General theory of Reynolds work.